FDA-Systems based Inspection Approach

Andreas Brutsche
QA PharmOps CH
Profile Class Codes

CCS CHEMICAL SYNTHESIS CRUDE
CHG CAPSULES - PROMPT RELEASE
CRU CRUDE BULK - (NON-SYNTHESIZED)
CSN NON-STERILE API BY CHEMICAL SYNTHESIS CRUDE
CTL CONTROL TESTING LABORATORIES
LIQ LIQUIDS-INCLUDES NON-STER SOL, SUSP, ELIX, TINCT
SVS STERILE-FILLED SMALL VOLUME PARENTERAL DRUGS
TCM TABLETS - PROMPT RELEASE
TTR TABLETS – EXTENDED RELEASE
NEC NOT ELSEWHERE CLASSIFIED
Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach

Introduction

FDA oversees the quality of drug products* using a two-pronged approach involving review of information submitted in applications as well as inspection of manufacturing facilities for conformance to requirements for current Good Manufacturing Practice (cGMP).

Now, as we approach the 25th anniversary of the last major revision to the drug cGMP regulations, it is time to step back and evaluate the currency of these programs so that:

the most up-to-date concepts of risk management and quality systems approaches are incorporated while continuing to ensure product quality;

the latest scientific advances in pharmaceutical manufacturing and technology are encouraged;

FDA resources are used most effectively and efficiently to address the most significant health risks.

To these ends, FDA is undertaking an initiative, "Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach."
Merging Science-Based Risk Management with an Integrated Quality Systems Approach

Over the last two decades, significant changes in the environment of pharmaceutical regulation have occurred and have resulted in incremental adjustments in FDA’s regulatory approach to product quality. These changes include:

• Decreased frequency of FDA manufacturing inspections as a result of fewer resources available for pharmaceutical manufacturing inspections

• FDA’s accumulation of experience with, and lessons learned from, various approaches to the regulation of product quality

• Advances in the pharmaceutical sciences and manufacturing technologies

• Application of biotechnology in drug discovery and manufacturing

• Advances in the science and management of quality

• Globalization of the pharmaceutical industry
Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach

The cumulative impact of these changes has been greater than the sum of the parts, and warrants a systematic reappraisal of FDA’s approaches to product quality regulation. The following principles will guide implementation of the reappraisal:

Risk-based orientation In order to provide the most effective public health protection, FDA must match its level of effort against the magnitude of risk. Resource limitations prevent uniformly intensive coverage of all pharmaceutical products and production. Although the agency has been implementing risk-based programs, a more systematic and rigorous risk-based approach will be developed.
Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach

Science-based policies and standards Significant advances in the pharmaceutical sciences and in manufacturing technologies have occurred over the last two decades. While this knowledge has been incorporated in an ongoing manner into FDA’s approach to product quality regulation, the fundamental nature of the changes dictates a thorough evaluation of the science base to ensure that product quality regulation not only incorporates up-to-date science, but also encourages further advances in technology. Recent science can also contribute significantly to assessment of risk.

Integrated quality systems orientation Principles from various innovative approaches to manufacturing quality that have been developed in the past decade will be evaluated for applicability, and cGMP requirements and related pre-approval requirements will be evaluated according to applicable principles. In addition, interaction of the pre-market CMC review process and the application of cGMP requirements will be evaluated as an integrated system.
International cooperation The globalization of pharmaceutical manufacturing requires a global approach to regulation. FDA will collaborate with other regulatory authorities, via ICH and other venues.

Strong Public Health Protection The initiative will strengthen the public health protection achieved by FDA’s regulation of drug product manufacturing and will not interfere with strong enforcement of the existing regulatory requirements, even as we are examining and revising our approach to these programs.

To accomplish the reappraisal, FDA will carry out the following broad actions:
- Perform an external review of the existing cGMP program and product review practices, including evaluation of potential inconsistencies in implementation
- Reassess and reevaluate our current scientific approach to both the product review process and the cGMP program to achieve a consistent, integrated systems approach to product quality regulation
- Enhance the scientific approach of cGMPs to emphasize risk-based control point analysis and to facilitate the latest innovations in pharmaceutical engineering
Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach

Intermediate Steps

• Use emerging science and data analysis to enhance compliance programs to target the highest risk areas
• Evaluating the feasibility of establishing dedicated cadres of pharmaceutical inspectors

Long term Steps

• Enhanced training of agency staff on new scientific approaches and innovative pharmaceutical manufacturing technology
• Develop and publish policies and procedures reflecting a science-based, risk management approach
• Educate industry on new regulatory approaches encouraging innovation
• Systems based Inspection Approach
 (no classic PAI – Approach)

• Risk based Inspection Approach
 (e.g. Steriles vs. Solids)
 according to "Pharmaceutical cGMPs
 for the 21st Century“ initiative
Strategy

- Global QA – System (top-down)
- QA – Lead
- Management Involvement
- Presentations
- Right Experts
- Summary Reports
- "Issue" - Presentations
80 percent of the success of an inspection is the preparation

Proactive behaviour against reactive!
(Victim or predator)
PAI – Inspection Approach

- **Product related**
 - development / justification of ranges
 - process validation
 - product related deviations

- **Facility related**
 - plant tour
 - specific equipment

→ **Bottom-up**

→ **High involvement of production / development**
System Based Inspection Approach

(Compliance Program 7356.002, effective February 1st, 2002)

• System Related
 • Quality System!
 • Facilities and Equipment System
 • Materials System
 • Production System
 • Packaging and Labeling System
 • Laboratory System

• Full (≥ 4 systems) vs. Appreviated Inspection (≥ 2 systems; mandatory coverage of Quality System)

• GMP-Compliance for whole operation / whole profile class
Quality System:

• Evaluate whether the QC unit has fulfilled their regulatory responsibilities

• Assess data collected to identify quality problems and may link to other major systems for inspectional coverage

→ Top down

→ High Involvement of QA / Compliance
Compliance Program
Pros and Cons

PRO:

• Conserves FDA resources
• Inspections will likely be shorter duration
• Prevents redundant site inspections

CON:

• Failure in one quality system will cause the entire facility to be regarded as non-compliant for all profile classes
Examples of Significant Deviations

Quality System:

1) Pattern of failure to review/approve procedures.

2) Pattern of failure to document execution of operations as required.

3) Pattern of failure to review documentation.

4) Pattern of failure to conduct investigations and resolve discrepancies/failures/deviations/complaints.

5) Pattern of failure to assess other systems to assure compliance with GMP and SOPs.
Quality System

Areas covered:

- Annual review under 211.180(e)
- Complaints (quality and AE)
- Deviation and failure investigations
- Change control
- Product improvement projects
- Reprocess / Rework
Quality System

- Returns/Salvages
- Rejects
- Stability failures
- Quarantined products
- Qualification and validation
- Training and qualifications of employees
Project NOVIS (GQO-Project)
Local Implementation

• Site Overview Presentation
• Quality System
• Facilities + Equipment
• Materials
• Production
• Packaging + Labelling
• Laboratory
Laboratory

- Reference standards
- System suitability checks
- Specifications, standards, sampling plans
- Methods
- Validation of methods
Laboratory

- Change control
- Testing of the correct sample
- Investigations/documentation
- Complete records
- Retention of raw data
- Data reviews
Laboratory

- OOS
- Reserve samples
- Stability
Laboratory Control System
Pattern of Failures leading to Regulatory Actions

1. Failure to establish/follow a control system for implementing changes in the laboratory operations
2. Failure to document investigation of discrepancies
3. Lack of validation of computerized and/or automated processes
4. Inadequate sampling practices
5. Lack of validated analytical methods
6. Failure to follow approved analytical procedures
7. Failure to follow an adequate OOS procedure
8. Failure to retain raw data
9. Lack of stability indicating methods
10. Failure to follow stability programs
Topics

• Trending (deviations, complaints, APRs)
• Process Validation covered only for Certican
• Plant tour to identify "issues"

→ QA – system rather than product - focused
Topics contd.

Deviations (AWMs):

- trending (i.e. quarterly reports)
- single Discrepancy System / Consistency
- root cause / failure investigation
- other products affected?
- measures / corrective actions / follow-up
- risk assessment / QA-decision

Examples:

- production failures (e.g. labeling)
- (re) - qualification failures (e.g. air velocity)
- physical monitoring failures (particle, pressure, humidity, disk-crash)
- utility failures (e.g. vent filters, sterile filters)
- (re) - calibration failures (e.g. wrong requirements)
Topics contd.

Complaints

- trending (i.e. quarterly reports)
- recalls
- field alerts
- critical / major complaints
Annual Product Review (APR):
• no PAI – product (Aredia, Miacalcin, Lioresal)
• Profile classes
• high volume US – products
• examples / consistency checks for:
 • OOS
 • deviations
 • complaints
 • changes
 • analytical
 • production (e.g. Field Alert for Aredia in 2000)
Topics contd.

Microbiological Monitoring:
• environmental (quarterly reports)
• sterility failures (summary)
• Media Fill Concept & Failures (summary)
• Water (trending & failures)

Sampling by FDA for fingerprint analysis (biobatch)

Follow-up of Previous FDA-Inspection(s)
• PAI-Inspection Glivec, Diovan by C. Ahn (April/May 2001)
• Deviation Handling System
• Consistency between qualification / validation ranges
Outlook / Actions

- Keep / Enforce strong Quality Unit
- Focus on QA - Systems
- Concentrate on Deviation Handling!
- Focus on Trending / Corrective Actions for System Failures
- Focus on Timelines / Deadlines
- Apply consistent GMP-Standard for US-profile classes – "legally vs. trust"
- Enforce lead of QA TechOps in Validation / Launch Process